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We study the distribution function of a three-dimensional wormlike chain with a fixed orientation of one
chain end using the exact representation of the distribution function in terms of the Green’s function of the
quantum rigid rotator in a homogeneous external field. The transverse one-dimensional distribution function of
the free chain end displays a bimodal shape in the intermediate range of chain lengths �1.3Lp , . . . ,3.5Lp�. We
also present analytical results for short and long chains, which are in complete agreement with the results of
previous studies obtained using different methods.
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I. INTRODUCTION

Polymers with contour length L much larger than the per-
sistence length Lp, which is the correlation length for the
tangent-tangent correlation function along the polymer and is
a quantitative measure of the polymer stiffness, are flexible
and are described by using the tools of quantum mechanics
and quantum field theory �1–6�. If the chain length de-
creases, the chain stiffness becomes an important factor.
Many polymer molecules have internal stiffness and cannot
be modeled by the model of flexible polymers developed by
Edwards �1�. The standard coarse-graining model of a worm-
like polymer was proposed by Kratky and Porod �7�. The
essential ingredients of this model are the penalty for the
bending energy and the local inextensibility. The latter makes
the treatment of the model much more difficult. There have
been a substantial number of studies of the Kratky-Porod
model in the last half century �8–20� �and citations therein�.
In recent years there has been increasing interest in the the-
oretical description of semiflexible polymers �21–35�. The
reason for this interest is due to potential applications in
biology �36� �and citations therein� and in research on semi-
crystalline polymers �37�.

It was found in the recent numerical work by Lattanzi et
al. �38�, and studied analytically in �39� within the effective
medium approach, that the transverse distribution function of
a polymer embedded in two-dimensional space possesses a
bimodal shape for short polymers, which is considered to be
a manifestation of the semiflexibility. The bimodal shape for
the related distribution function of the two-dimensional �2D�
polymer was also found in recent exact calculations by Spa-
kowitz and Wang �40� and Chaudhuri �41�. In this paper, we
study the transverse distribution function G�t0 ,x=0,y ,N� of
a three-dimensional wormlike chain with a fixed orientation
t0 of one polymer end, using the exact representation of the
distribution function in terms of the matrix element of the
Green’s function of the quantum rigid rotator in a homoge-
neous external field �33�. The exact solution of the Green’s
function made it possible to compute the quantities such as
the structure factor, the end-to-end distribution function, etc.,
almost exactly in a definite range of parameters �25,29,33�.
Our practically exact calculations of the transverse distribu-
tion function of the 3D wormlike chain demonstrate that it

possesses a bimodal shape in the intermediate range of chain
lengths �1.3Lp , . . . ,3.5Lp�. In addition, we present analytical
results for short and long wormlike chain based on the exact
formula �1�, which are in complete agreement with the
previous results obtained in different ways the Wentzel-
Kramers-Brillouin �WKB� method for short polymers �19�
and perturbation theory for large chains �18�.

The paper is organized as follows. Section II introduces
the formalism and analytical considerations for short and
large polymers. Section III contains results of the numerical
computation of the distribution function for polymers with
different numbers of monomers.

II. ANALYTICAL TREATMENT

The Fourier-Laplace transform of the distribution function
of the free end of the wormlike chain with a fixed orientation
t0= �dr�s� /ds�s=0 of the second end is expressed, according to
�33�, in a compact form through the matrix elements of the
Green’s function of the quantum rigid rotator in a homoge-

neous external field P̃s�k , p� as

G�t0,k,p� = �
l=0

�

�0�P̃s�k,p��l�	2l + 1Pl�t0n� , �1�

where n=k /k, Pl�x� are Legendre polynomials, and P̃s�k , p�
is defined by

P̃s�k,p� = �1 + ikDMs�−1D , �2�

with D and Ms being the infinite-order square matrices given
by

Dl,l� =
�l,l�

p +
l�l + 1�

2

, Ml,l�
s = wl�l,l�+1 + wl+1�l+1,l�, �3�

and wl=	l2 / �4l2−1�. The matrix D is related to the energy
eigenvalues of the free rigid rotator, while Ms gives the ma-
trix elements of the homogeneous external field. Since

P̃s�k , p� is the infinite-order matrix, a truncation is necessary
in the performing calculations. The truncation of the infinite-
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order matrix of the Green’s function by the �n�n�-order
matrix contains all moments of the end-to-end chain dis-
tance, and describes the first 2n−2 moments exactly. The
projected transverse distribution function we consider,
G�t0 ,x=0,y ,N�, is obtained from G�t0 ,x ,y ,z ,N�, which is
determined by Eqs. �1�–�3�, integrating it over the z coordi-
nate, and imposing the condition that the free end of the
chain stays in the x=0 plane. As a result we obtain

G�t0,x = 0,y,N� = 

−�

�

dz G�t0,x = 0,y,z,N�

= 

0

�

k dk G�t0, �k�kz=0,N�J0�ky� , �4�

where J0�ky� is the Bessel function of the first kind �42�.
Taking the z axis to be in the direction of t0 yields t0n=0, so
that the arguments of the Legendre polynomials in Eq. �1�
become zero, and consequently only even l will contribute to
the distribution function �4�.

A. Short wormlike chain

We now will consider the expansion of �1� around the rod
limit N→0, which corresponds to the expansion of G�t ,k , p�
in inverse powers of p. To derive such an expansion, we
write D in the equivalent form as

D = D0 −
1

p
ED �5�

with Dl,l�
0 = p−1�l,l� and El,l�= l�l+1� /2�l,l�. Further, we intro-

duce the notation �1+ ikDMs�−1=y0ỹ with y0 and ỹ defined
by

y0 = �1 + ikD0Ms�−1, ỹ = 1 + ik
E

p
DMsy0ỹ . �6�

The iteration of D and ỹ results in the desired expansion of ỹ
and consequently of G�t0 ,k , p� in inverse powers of p, which
corresponds to an expansion of G�t0 ,k ,N� in powers of N.
The leading order term in the short chain expansion is ob-
tained by replacing D by D0 in Eq. �1� as

G0�t0,k,p� = �
l=0

�

�y0D0�0l
	2l + 1Pl�t0n� . �7�

The latter coincides with the expansion of the plane wave
�43�

e−ikr cos � = �
l=0

�

il�2l + 1�� r

k
�l�1

r

d

dr
�lsin kr

kr
Pl�cos �� , �8�

where cos �= t0n is the angle between the tangent t0 and the
wave vector k. The connection of G0�t0 ,k , p� with the plane
wave expansion is due to the fact that the Kratky-Porod
chain becomes a stiff rod in the limit of small N. We have
checked the equivalency between the plane wave expansion
�8� and the distribution function �7� term by term by expand-
ing �7� in series in powers of the wave vector k. The arc

length N is equivalent for a stiff rod in the units under con-
sideration to the chain end-to-end distance r. In the r space
the plane wave �8� corresponds to the stiff rod distribution
function

G��t0,r,N��N→0 = ��x���y���z − N� . �9�

The iteration of D in �5� and ỹ in �6� generates an expan-
sion of G�t0 ,k , p� in inverse powers of p. The corrections to
the plane wave to order 1 / p3 are obtained as

G1�t0,k,p� = �
l=0

� 
− y0
E

p
D0 + y0�E

p
�2

D0

+ iky0
E

p
D0Msy0D0�

0l

	2l + 1Pl�t0n� + ¯ .

The above procedure yields for l=0 the short chain ex-
pansion of the distribution function of the free Kratky-Porod
chain, which was studied recently in �34�. Unfortunately, we
did not succeed yet in analytical evaluation of G1�t0 ,k ,N�.
Such computation would be an interesting alternative to the
treatment of the short limit of the wormlike chain by Ya-
makawa and Fujii �19� within the WKB method. Neverthe-
less, following the consideration in �34� we succeeded in
computing the anisotropic moments ��rt0�n� for small N,

��rt0�n� = Nn�1 −
n

2
N +

n�5n − 1�
24

N2 + ¯ � . �10�

The first-order correction coincides with that obtained in �19�
using the WKB method, while the second-order correction is
to our knowledge new. The higher-order terms in �10� can be
established in a straightforward way using the present
method. Note that the computation of ��rt0�n� does not re-
quire the knowledge of the full distribution function
G�t0 ,r ,N�.

B. Large chain

In studying the end-to-end distribution function for large
N we utilize the following procedure. We expand first the

expression �0�P̃s�k , p��l� in powers of k2. The structure of this
expansion for l=0 is presented in Table I. The subseries in
powers of k2 in the qth column are denoted by Tq

l . Thus we
have

Gl�k,p� � 	2l + 1�0�P̃s�k,p��l� = �
q

Tq
l .

The series Tq
l with small values l and q possess a simple

structure and can be summed up. For example, T1
0 and T2

0 are
given by

T1
0 = 3�

m=1

�
�− 1�m−1w1

2mk2m−2

pm =
1

k2/3 + p
,

T2
0 = �

m=1

�
�− 1�m−1w1

2mk2m

pm m�1 +
w2

2k2

p
� =

k2�45p + 4k2�
15�k2 + 3p�2 .

While T1
0 corresponds to the distribution function of the

Gaussian chain, Tq
0 give the qth corrections to the Gaussian
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distribution. The inspection of the series for T1
1 and T2

1 shows
that they are expressed by T1

0 and T2
0 as

T1
1 = − ikT1

0, T2
1 = −

3ip

k
T2

0.

However, it seems that there is no general recursion relation
for Tq

l . The results of computations of Gl�k , p� for l
=1,2 ,3 ,4 by taking into account q=1,2 ,3 �l=0� and q
=1,2 �l�0� are summarized in Table II.

The inverse Laplace-Fourier transform of Gl�k , p� given
in Table II yields the expansion of the end-to-end distribution
function G�R ,� , t� to order O�t−2� as

G�R,�,t� = �4	�−1� 3

2	t
�3/2

exp�−
3R2

2t
�

� 
1 −
5

8t
+ 2

R2

t2 −
33

40

R4

t3 +
6799

1600

R4

t4 −
3441

1400

R6

t5

+
1089

3200

R8

t6 −
329

240

R2

t3 −
79

640t2

+ �3

2

R

t
+

153

40

R3

t3 −
99

80

R5

t4 −
25

16

R

t2�P1�cos ��

+ �1

2

R2

t2 +
961

560

R4

t4 −
33

80

R6

t5 −
67

60

R2

t3 �P2�cos ��

+
3

40

R3

t3 P3�cos �� +
9

1400

R4

t4 P4�cos ��� , �11�

where t=N /2, R=r /2, and � is the angle between R and t0.
The latter is in accordance with the result by Gobush et al.
�18� derived in a different way. The expansion of G�R ,� , t�
for large N can be extended in a straightforward way to in-
clude higher-order corrections.

III. NUMERICAL RESULTS

The computation of the distribution function of the poly-
mer with fixed orientation of one end is performed by trun-
cating the infinite-order matrices in �1� with finite ones, and
by taking into account a finite number of terms in the sum-
mation over l. The inverse Laplace transform of �1� is carried
out with MAPLE. The results of the calculation of the pro-
jected distribution function G�t0 ,x=0,y ,N�, using trunca-
tions with �20�20�-order matrices and restricting the sum-
mation over the quantum number l at l=8, are given in Fig.
1. The results show that the distribution function possesses a
bimodal shape at intermediate chain lengths within the inter-
val N�1.3, . . . ,3.5. We also find that the distribution func-

TABLE I. Structure of expansion of G0�k , p�.

q

1 2 3

k0 1

p

k2 −w1
2

p2

w1
2

p

−w1
2

k4 w1
4

p3

−6w1
4+w1

2w2
2

3p2

27w1
4−7w1

2w2
2

9p

k6 −w1
6

p4

9w1
6−2w1

4w2
2

3p3

−324w1
6+120w1

4w2
2−w2

2w1
2w3

2−6w2
4w1

2

54p2

k8: w1
8

p5

w1
6w2

2−4w1
8

p4

−117w1
6w2

2+w1
4w2

2w3
2+270w1

8+9w1
4w2

4

27p3

]

TABLE II. Results for Gl�k , p� for l=0,1 ,2 ,3 ,4.

l Gl�k , p�

0 1

k2 /3+ p
+

k2�45p+4k2�

15�k2+3p�2

−
k2�4725p3+90k4p+980k2p2+2k6�

525�k2+3p�3 . . .

1 −3ik

k2+3p
−

1/5ikp�4k2+45p�

�k2+3p�2 . . .

2 k2

3k2+9p
+

1

210

k2�k4+45k2p+280p2�

�k2+3p�2 . . .

3 ik3

15k2+45p
+

1

2025

ik5�65k2+294p�

�k2+3p�2 . . .

4 2

525

k4

k2+3p
+

1

259875

508k8+2250k6p

�k2+3p�2 . . .

FIG. 1. Normalized distribution function G�t0 ,x=0,y ,N� for
various chain lengths, computed with 20�20 matrices. The insets
show the distribution function at the onset of bimodality, and in the
region of its disappearance.
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tion becomes Gaussian for very short and very long chains.
At the onset there is a tiny maximum at y=0, which we
interpret as a remnant of the Gaussian behavior of short
chains. The maximum at y=0 for the 3D chain is a rather
small effect, which is difficult to explain in a qualitative way.

We now will discuss qualitatively the origin of the bimo-
dal behavior of the projected distribution function of the free
end of the wormlike chain. The very short wormlike chain
behaves similarly to a weakly bending stiff rod, so that the
distribution function of the free end is Gaussian with the
maximum at y=0. The typical conformation of the chain in
this regime looks like a bending rod with constant sign of
curvature along the chain. For larger contour lengths, the
curvature fluctuations are small and are still controlled by the
bending energy, but, with varying signs of curvature along
the chain. The typical conformation of the chain can be
imagined as undulations along the average conformation of
the polymer. The projected distribution function of the free
end in this regime is expected to be roughly uniform within
some range of y. We expect that the inhomogeneities of cur-
vature fluctuations in the vicinity of the clamped end are the
reason for the maximum at y�0. The larger curvatures in the
vicinity of the fixed end result in larger displacements y of
the free end, and therefore contribute preferentially to the
maximum at y�0. With further increase of N the conforma-
tions correspond to undulations around the average confor-
mation of the chain, which is now a meandering line. Fluc-
tuations become now less controlled by bending energy,
which results in weakening of the bimodality. Since the dif-
ference between the 2D and 3D chains is assumed to be
marginal for short chains on the projected distribution func-
tion, we will compare the onset of the bimodality in both
cases. Because the transversal displacement is measured in
both cases in units of the contour length, we have to recom-
pute the number of segments for 3D and 2D chains at the
onset according to

N�3� =
L

Lp�3�
=

Lp�2�
Lp�3�

L

Lp�2�
=

Lp�2�
Lp�3�

N�2� .

Using the dependence of the persistence length on dimen-
sionality �39�, Lp�d��1/ �d−1�, we obtain N�3�=2N�2�. Ac-
cording to �38� N�2��0.75 at the onset, hence we obtain
N�3��1.5, which is not far from our numerical result,
N�3��1.3 �see Fig. 1�.

We now will address the issue of accuracy of the calcula-
tions, which depends on the size of the matrices D and Ms,
and the maximal l at which the summation over l is stopped.
In order to check our computation we verified that at large N
�N=100� the numerical evaluation of �4� gives with very
high accuracy the Gaussian distribution 3/ �2N�exp
�−3y2 /4N�. The general tendency is such that the sufficient
level of matrix truncations and the number of terms in the
expansion over the Legendre polynomials increase with de-
creasing N. In the limit N→0 the whole series over l should
be taken into account. We have tested the accuracy of the
computations of the distribution function for N=0.5 by using
truncations to 13�13 matrices and 20�20 matrices, and
stopping summation in both cases at l=8. The results coin-

cide exactly in both cases. The corrections due to higher l�s
are negligibly small. For example, the corrections associated
with l=10 and 12 contribute only in the third and fifth deci-
mal digits, respectively. Thus, the computations depicted in
Fig. 1 can be considered as exact.

We have computed the distribution function G0�r ,N� of a
free 3D wormlike chain by performing the inverse Laplace-
Fourier transform of the term l=0 in Eq. �1� for values of
L /Lp available in Monte Carlo simulations �21�. Our results
are in excellent agreement with the numerical data. Figure 2
shows the comparison of the computation of the 3D distri-
bution function of the free polymer for values of N=L /Lp
corresponding to those in the inset of Fig. 2 in �26�. Our
results are in very good agreement �except very small r� with
the double-humped form of the distribution function of the
free wormlike chain, which was observed in Monte Carlo
simulations by Dhar and Chaudhuri.

Bimodality of the projected distribution function for a
wormlike chain with fixed orientation of one end appears for
smaller values of N=L /Lp than the double-humped behavior
of the free chain. In the case of the projected transverse
distribution function studied here �and in �38–41� for 2D
chain�, the free end of the chain is not required to return to
the origin. Therefore, in agreement with intuition one expects
that for chains with the same Lp but different arc lengths L
the double-humped behavior of the free chain will appear at
larger L. In a recent study of the distribution function of a
free wormlike chain and chains grafted at one and both ends
�41� the double maxima appear at lower values of N for
chains less subjected to constraints. In the context of the
discussion in terms of chains with the same persistence
length, the free chain is expected to exhibit a maximum at
the origin at smaller L.

IV. CONCLUSION

To conclude, we have studied the transverse distribution
function of the free end of a three-dimensional wormlike

FIG. 2. Comparison of the computation of the end-to-end distri-
bution function of a free polymer �continuous curves� using trunca-
tions by 20�20 matrices with Monte Carlo data �26� represented
by symbols: squares, N=4; circles, N=3.85; triangles, N=3.7.
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chain with fixed orientation and position of the second end
using the exact solution for the Green’s function of the
wormlike chain. Within the procedure of truncations of the
exact formula with finite-order matrices we find that the pro-
jected distribution function G�t0 ,x=0,y ,N� for intermediate
chain lengths belonging to the interval 1.3Lp , . . . ,3.5Lp pos-
sesses a bimodal shape with maxima at a finite value of the
transverse displacement, which is consistent with the recent
studies �38–40� for a two-dimensional chain. For a 2D
wormlike chain, it was previously demonstrated that the dis-
tribution function exhibits a trimodal shape in the region of
the onset of bimodality and its disappearance at larger N. For
a 3D chain the transverse 1d distribution function shows
only a tiny peak at y=0 in the vicinity of the onset of bimo-
dality. This feature is not present for larger N. The bimodal-

ity of the projected distribution function for a chain with
fixed orientation of one end appears for smaller values of N
than the double-humped behavior of the free chain. We
present also analytical results for short and large polymers
which are in complete agreement with the classical works
�9,18,19�, where these limits were investigated using differ-
ent methods. The computation of the three-dimensional dis-
tribution function of a free polymer is in excellent agreement
with the Monte Carlo simulations in �21,26�.
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